Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1.
نویسندگان
چکیده
Understanding how cells regulate microtubule nucleation during the cell cycle has been limited by the inability to directly observe nucleation from the centrosome. To view nucleation in living cells, we imaged GFP-tagged EB1, a microtubule tip-binding protein, and determined rates of nucleation by counting the number of EB1-GFP comets emerging from the centrosome over time. Nucleation rate increased 4-fold between G(2) and prophase and continued to rise through anaphase and telophase, reaching a maximum of 7 times interphase rates. We tested several models for centrosome maturation, including gamma-tubulin recruitment and increased centrosome size. The centrosomal concentration of gamma-tubulin reached a maximum at metaphase, and centrosome size increased through anaphase, whereas nucleation remained high through telophase, implying the presence of additional regulatory processes. Injection of anti-gamma-tubulin antibodies significantly blocked nucleation during metaphase but was less effective during anaphase, suggesting that a nucleation mechanism independent of gamma-tubulin contributes to centrosome function after metaphase.
منابع مشابه
Survivin modulates microtubule dynamics and nucleation throughout the cell cycle.
Survivin is a member of the chromosomal passenger complex implicated in kinetochore attachment, bipolar spindle formation, and cytokinesis. However, the mechanism by which survivin modulates these processes is unknown. Here, we show by time-lapse imaging of cells expressing either green fluorescent protein (GFP)-alpha-tubulin or the microtubule plus-end binding protein GFP-EB1 that depletion of...
متن کاملSurvivin Modulates Microtubule Dynamics and Nucleation throughout the Cell Cycle□D □V
Survivin is a member of the chromosomal passenger complex implicated in kinetochore attachment, bipolar spindle formation, and cytokinesis. However, the mechanism by which survivin modulates these processes is unknown. Here, we show by time-lapse imaging of cells expressing either green fluorescent protein (GFP)-tubulin or the microtubule plus-end binding protein GFP-EB1 that depletion of survi...
متن کاملQuantification of microtubule nucleation, growth and dynamics in wound-edge cells.
Mammalian cells develop a polarized morphology and migrate directionally into a wound in a monolayer culture. To understand how microtubules contribute to these processes, we used GFP-tubulin to measure dynamic instability and GFP-EB1, a protein that marks microtubule plus-ends, to measure microtubule growth events at the centrosome and cell periphery. Growth events at the centrosome, or nuclea...
متن کاملAndrogen and Src signaling regulate centrosome activity.
Microtubules nucleated from gamma-tubulin ring complexes located at the centrosome regulate the localization of organelles, promote vesicular transport and direct cell migration. Although several signaling mechanisms have been identified that regulate microtubule dynamics during interphase, signaling pathways that promote microtubule nucleation remain elusive. We assayed microtubule regrowth fo...
متن کاملMicrotubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis.
Growth of most eukaryotic cells requires directed transport along microtubules (MTs) that are nucleated at nuclear-associated microtubule organizing centers (MTOCs), such as the centrosome and the fungal spindle pole body (SPB). Herein, we show that the pathogenic fungus Ustilago maydis uses different MT nucleation sites to rearrange MTs during the cell cycle. In vivo observation of green fluor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 6 شماره
صفحات -
تاریخ انتشار 2004